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1. Introduction

Hopf-Galois theory, specifically, the study of Hopf-Galois structures
on Galois extensions of number fields, was introduced by C.
Greither and B. Pareigis in the paper [GP87] as a way of
generalizing classical Galois theory.

Since the appearance of this important paper, Hopf-Galois
structures have been studied extensively by many authors,
including N. Byott, L. Childs, T. Crespo, C. Greither, A. Koch, T.
Kohl, D. Muñoz, A. Rio, P. J. Truman, S. Taylor, and U.
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Some of these researchers have focused on the following problem:
Given a (classical) Galois extension of number fields E/K ,
enumerate the number of Hopf-Galois structures on E/K of each
possible type N.

Other authors have addressed the question: How does one
determine the Hopf algebra isomorphism classes of the Hopf
algebras that arise from the Hopf-Galois structures on a Galois
extension of number fields?
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In this talk we show how the bijection of R. Haggenmüller and B.
Pareigis [HP86]

Θ : Gal(R,F )→ Form(R[N])

from the collection of Galois extensions to the collection of forms
of the Hopf algebra R[N], is related to the Hopf algebra
isomorphism problem.

This is joint work with Timothy Kohl.
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2. Galois Extensions

Let R be a commmutative ring with unity. The notion of a Galois
extension of R is due to M. Auslander and O. Goldman [AG59].

Let A be a commutative R-algebra. Let EndR(A) denote the
R-algebra of R-linear maps φ : A→ A.

Let AutR(A) denote the group of R-algebra automorphisms of A
and let F be a finite subgroup of AutR(A). Let D(A,F ) denote
the collection of sums

∑
g∈F agg , ag ∈ A.
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On D(A,F ) endow an R-module structure: For r ∈ R,
r(
∑

g∈F agg) =
∑

g∈F ragg .

Define a multiplication on D(A,F ): For
∑

g∈F agg ,∑
h∈G bhh ∈ D(A,F ), let

(
∑
g∈F

agg)(
∑
h∈F

bhh) =
∑
g ,h∈F

agg(bh)gh,

where gh is the group product in F .

The resulting R-algebra D(A,F ) is the crossed product algebra
of A by F .
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Let
j : D(A,F )→ EndR(A)

be the map defined as

j(
∑
g∈F

agg)(t) =
∑
g∈F

agg(t),

for ag , t ∈ A. Then j is a homomorphism of R-algebras since j is
R-linear and

j(ag · bh)(t) = j(ag(b)gh)(t)

= ag(b)g(h(t))

= ag(bh(t))

= (j(ag) ◦ j(bh))(t),

for a, b, t ∈ A, g , h ∈ F .
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The question of whether j is an isomorphism of R-algebras
determines whether A is a Galois extension.

Definition 2.1.
Let R be a commmutative ring with unity and let A be a
commutative R-algebra. Then A is an F -Galois extension of R if

(i) A is a finitely generated, projective module over R,

(ii) the map
j : D(A,F )→ EndR(A)

defined as
j(
∑
g∈F

agg)(x) =
∑
g∈F

agg(x),

for all x ∈ A, ag ∈ A, is an isomorphism of R-algebras.
�
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The notion of F -Galois extension generalizes the usual definition of
a Galois extension of fields.

Example 2.2.
Take R = K , where K is a finite field extension of Q. Let L be a
(classical) Galois extension of K with group G . Then
AutK (L) = G , LG = K , and L is separable over K . Thus by
[CHR65, Theorem 1.3, (a)⇔(c)], the map

j : D(L,G )→ EndK (L)

defined as j(agg)(x) = agg(x), for ag , x ∈ L, g ∈ G , is an
isomorphism of K -algebras. Thus L is a G -Galois extension of K .

�
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Let A, A′ be F -Galois extensions of R. Then A is isomorphic to
A′ if there exists an isomorphism of commutative R-algebras

ψ : A→ A′

for which ψ(g(x)) = g(ψ(x)) for all g ∈ F , x ∈ A.

We let Gal(R,F ) denote the set of isomorphism classes of F -Galois
extensions of R.

There is a trivial object in Gal(R,F ). Let Map(F ,R) denote the
R-algebra of maps φ : F → R. Then {φg}g∈F , with φg (h) = δg ,h,
g , h ∈ F , is an R-basis for Map(F ,R). We have

Map(F ,R) =
⊕
g∈F

Rφg ∼= R × R × · · · × R︸ ︷︷ ︸
|F |

.
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There is an action of F on Map(F ,R) given as

g(φ)(h) = φ(g−1h)

for g , h ∈ F , φ ∈ Map(F ,R). For the basis element φh, we have

g(φh)(k) = φh(g−1k) = δh,g−1k = δgh,k = φgh(k),

for all k ∈ F , thus g(φh) = φgh. Through this action, F is a finite
subgroup of AutR(Map(F ,R)).

Proposition 2.3. The commutative R-algebra Map(F ,R) is an
F -Galois extension of R.

Proof. Since Map(F ,R) is free over R of rank |F |, condition (i) of
Definition 2.1 holds. For (ii), we first show that R = Map(F ,R)F .
Since F ≤ AutR(Map(F ,R)), we have R ⊆ Map(F ,R)F . For the
reverse containment, let φ =

∑
g∈F rgφg ∈ Map(F ,R) for rg ∈ R.
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Then

h(φ)(k) = h(
∑
g∈F

rgφg )(k)

= (
∑
g∈F

rgh(φg ))(k)

= (
∑
g∈F

rgφhg )(k)

= (
∑
g∈F

rgφg )(k)

for all h, k ∈ F if and only if the coefficients rg are equal for all
g ∈ F . Thus φ ∈ R, which shows that R = Map(F ,R)F .
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Now, the elements {φg}g∈F are so that∑
g∈F

φgh(φg ) = φ1(h) = δ1,h,

for all h ∈ F . Thus by [CHR65, Theorem 1.3, (b)⇔(c)], the map

j : D(Map(F ,R),F )→ EndR(Map(F ,R))

is an isomorphism of R-algebras. Thus Map(F ,R) is an F -Galois
extension of R.

�

The F -Galois extension Map(F ,R) is the trivial F -Galois
extension of R.
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In the case that R = K is a field, B. Pareigis [Pa90, Theorem 4.2]
has completely characterized F -Galois extensions of K .

Theorem 2.4. (Pareigis) Let K be a field and let F be a finite
group. Then A is an F -Galois extension of K if and only if

A = M ×M × · · · ×M︸ ︷︷ ︸
n

where M is a U-Galois field extension of K for some subgroup U of
F of index n. (M is a Galois extension of K with group U in the
usual sense.)
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Proof. Let A be an F -Galois extension of K . By [CHR65,
Theorem 1.3], A is a commutative, separable K -algebra and hence

A = M1 ×M2 × · · · ×Mn

where each Mi is a separable field extension of K . Let
φ1, φ2, . . . , φn be the minimal orthogonal idempotents. Then F
acts transitively on the set {φ1, φ2, . . . , φn}.

We have Mi
∼= Mj ,∀i , j , hence

A = M ×M × · · · ×M︸ ︷︷ ︸
n

,

where M = M1. Let U be the stabilizer of φ1 in F . Then M is
Galois over K with group U and [F : U] = n.
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Conversely, let U ≤ F , n = [F : U], and let M be a U-Galois field
extension of K . Let

A = M ×M × · · · ×M︸ ︷︷ ︸
n

with minimal orthogonal idempotents φ1, φ2, · · ·φn.

Let g1, g2, . . . , gn be a left transversal for U in F and let
ρ : F → Sn be defined as

ρ(g)(i) = j iff ggiU = gjU.

Define an action of F on A on each component as

g(mφi ) = (g−1ρ(g)(i)ggi )(m)φρ(g)(i),

for m ∈ M, 1 ≤ i ≤ n. Then A is an F -Galois extension of K .
�
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Remark 2.5. If one begins with an F -Galois extension

A = M1 ×M2 × · · · ×Mn,

together with a transitive action of F on the idempotents
X = {φ1, φ2, . . . , φn}, then the stabilizer U of φ1 in F is the
isotropy subgroup Fφ1 of φ1.

Thus the set X is isomorphic to the F -set of left cosets F/Fφ1 , and
the action of F on X is essentially the action of F on the set of left
cosets F/Fφ1 given in the converse of the proof of Theorem 2.4.

�
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Example 2.6. Let K be a field and let C4 denote the cyclic group
of order 4. Then the C4-Galois extensions of K are of the form

A,

where A is a C4-Galois field extension of K , or

A = M ×M,

where M is a C2-Galois field extension of K , or

A = K × K × K × K

(the trivial C4-extension of K .)
�
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2.1 Forms of Map(F ,R) and the direct limit

Let Map(F ,R) be the trivial F -Galois extension of R. Let B be a
faithfully flat commutative R-algebra. A B-form of Map(F ,R) is
an F -Galois extension A of R for which

B ⊗R A ∼= B ⊗R Map(F ,R) = Map(F ,B)

as F -Galois extensions of B.

A form of Map(F ,R) is an F -Galois extension A of R for which
there exists a faithfully flat commutative R-algebra B with

B ⊗R A ∼= B ⊗R Map(F ,R) ∼= Map(F ,B)

as F -Galois extensions of B.

The trivial form of Map(F ,R) is Map(F ,R).
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For a given faithfully flat commutative R-algebra B, we let

Form(B/R,Map(F ,R))

denote the collection of all B-forms of Map(F ,R). We let
Form(Map(F ,R)) denote the collection of all forms of Map(F ,R).

We can view Form(Map(F ,R)) as a direct limit. The set {B/R}
of all faithfully flat commutative R-algebras B is partially ordered
under inclusion and serves as the indexing set for the collection of
objects

{Form(B/R,Map(F ,R))B/R}.

Suppose that B/R, B ′/R, are faithfully flat commutative
R-algebras with B ⊆ B ′. If A is a B-form of Map(F ,R), then A is
an B ′-form of Map(F ,R), thus there is a set morphism (an
inclusion)

%B,B′ : (B/R,Map(F ,R))B/R → (B ′/R,Map(F ,R))B′/R .
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For all B/R, %B,B is the identity map and

%B′,B′′ ◦ %B,B′ = %B,B′′ ,

whenever B ⊆ B ′ ⊆ B ′′. So

{Form(B/R,Map(F ,R))B/R , %B,B′}

is a direct system over {B/R}.

The direct limit lim
−→
Form(B/R,Map(F ,R))B/R exists and we have

Form(Map(F ,R)) = lim
−→
Form(B/R,Map(F ,R))B/R . (1)
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3. Hopf Algebras
An R-Hopf algebra is a R-algebra H together with additional
maps

∆H : H → H ⊗R H (comultiplication),

εH : H → R (counit),

SH : H → H (coinverse),

where ∆H , εH are R-algebra maps and SH is a R-linear map,
which satisfy the conditions:

(IH ⊗∆H)∆H(h) = (∆H ⊗ IH)∆H(h), (2)

(IH ⊗ εH)∆H(h) = h ⊗ 1, (εH ⊗ IH)∆H(h) = 1⊗ h, (3)

mH(IH ⊗ SH)∆H(h) = εH(h)1H = mH(SH ⊗ IH)∆H(h), (4)

for all h ∈ H.
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Here IH : H → H is the identity map and mH : H ⊗K H → H
denotes multiplication in H.

Properties (2), (3), (4), are the coassociative property, counit
property, and coinverse property, respectively.

Example 3.1. Let N be any group. Then the group ring R[N] is a
R-Hopf algebra with comultiplication map

∆R[N] : R[N]→ R[N]⊗R R[N]

defined as η 7→ η ⊗ η, counit map

εR[N] : R[N]→ R,

given as η 7→ 1, and coinverse map

SR[N] : R[N]→ R[N]

defined by η 7→ η−1, for all η ∈ N.

Henceforth, when we write R[N], we assume that R[N] has this
structure as a R-Hopf algebra.
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3.1 Forms of R[N] and the direct limit

Let N be a group and let B be a faithfully flat commutative
R-algebra. A B-form of R[N] is a R-Hopf algebra H for which

B ⊗R H ∼= B ⊗R R[N] ∼= B[N]

as B-Hopf algebras. A form of R[N] is a R-Hopf algebra H for
which there exists a faithfully flat commutative R-algebra B with

B ⊗R H ∼= B ⊗R R[N] ∼= B[N]

as B-Hopf algebras.

The trivial Hopf form of R[N] is R[N].

For a given faithfullly flat R-algebra B, we let Form(B/R,R[N])
denote the collection of all B-forms of R[N]. We let Form(R[N])
denote the collection of all forms of R[N].
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We can view Form(R[N]) as a direct limit. As in Section 2.1,
{B/R,⊆} is a directed set and

{Form(B/R,R[N])B/R , %B,B′}

is a direct system over {B/R} where

%B,B′ : (B/R,R[N])B/R → Form(B ′/R,R[N])B′/R

is the inclusion map. The direct limit exists and satisfies

Form(R[N]) = lim
−→
Form(B/R,R[N])B/R . (5)
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4. Galois Extensions and Forms of R[N]
Let N be a finitely generated group with finite automorphism
group F = Aut(N).

R. Haggenmüller and B. Pareigis [HP86, Corollary 4] have shown
that there is a bijective correspondence between Gal(R,F ) and
Form(R[N]).

We first prove a lemma.

Lemma 4.1 Let F be a finite group. Then

Gal(R,F ) = Form(Map(F ,R)).

Proof. Let A be an F -Galois extension of R. Then A is faithfully
flat over R. Now, A⊗R A is an A-algebra through
a(b ⊗ c) = b ⊗ ac for a, b, c ∈ A, and A⊗R A is an F -Galois
extension of A by the action g(a⊗ b) = g(a)⊗ b for g ∈ F .
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Let Map(F ,A) denote the A-algebra of maps F → A. Then
Map(F ,A) is the trivial F -Galois extension of A.

There is an isomorphism of A-algebras

ψ : A⊗R A→ Map(F ,A)

defined as ψ(a⊗ b)(g) = g−1(a)b for a, b ∈ A, g ∈ F . Moreover,
ψ preserves the action of F since

ψ(g(a⊗ b))(h) = ψ(g(a)⊗ b)(h)

= h−1(g(a))b

= ψ(a⊗ b)(g−1h)

= g(ψ(a⊗ b))(h),

for all h ∈ F . Thus ψ is an isomorphism of F -Galois extensions of
A.
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Since Map(F ,A) ∼= A⊗R Map(F ,R), the R-algebra A is an
A-form of Map(F ,R).

This shows that Gal(R,F ) ⊆ Form(Map(F ,R)).

By construction, every form of Map(F ,R) is an F -Galois extension
of R, thus Gal(R,F ) = Form(Map(F ,R)).

�
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Theorem 4.2 (Haggenmüller and Pareigis) Let N be a finitely
generated group with finite automorphism group F = Aut(N).
Then there is a bijection

Θ : Gal(R,F )→ Form(R[N]).

Proof. Let B be a faithfully flat commutative R-algebra. By
[Wa79, Section 17.6, Theorem], there is a bijective correspondence

Form(B/R,Map(F ,R))→ H1(B/R,Aut(Map(F ,R))) (6)

where Aut(Map(F ,R)) denotes the automorphism group functor
in the category of F -Galois extensions of R [Wa79, Section 7.6].

(For a commutative R-algebra B, Aut(Map(F ,R))(B) is the
group of isomorphisms

B ⊗R Map(F ,R)→ B ⊗R Map(F ,R)

of F -Galois extensions of B.)
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Let G(R[F ]) denote the grouplike functor from the category of
faithfully flat commutative R-algebras to the category of groups,
defined as follows: For a faithfully flat R-algebra B, G(R[F ])(B)
consists of the grouplike elements of the Hopf algebra

B ⊗R R[F ] ∼= B[F ].

(If R = K is a field, and B = L is a field extension of K , then
G(K [F ])(L) = F .)

The automorphism group functor Aut(Map(F ,R)) is isomorphic
to the grouplike functor G(R[F ]) [Ha79, Proposition 2.14].

Thus, there is a bijective correspondence

Form(B/R,Map(F ,R))→ H1(B/R,G(R[F ])). (7)
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By [Wa79, Section 17.6, Theorem], there is a bijective
correspondence

Form(B/R,R[N])→ H1(B/R,Aut(R[N])) (8)

where Aut(R[N]) denotes the automorphism group functor in the
category of R-Hopf algebras [Wa79, Section 7.6].

(For any commutative R-algebra B, Aut(R[N])(B) is the group of
Hopf algebra isomorphisms B ⊗R R[N]→ B ⊗R R[N].)

Now, B ⊗R R[N] ∼= B[N], and Hopf algebra automorphisms of
B[N] are completely determined as the set of grouplike elements
G(R[F ])(B) of the group ring Hopf algebra B[F ], where
F = Aut(N) [HP86, Theorem 2].
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Thus, the automorphism group functor Aut(R[N]) is isomorphic to
the grouplike functor G(R[F ]), and there is a bijective
correspondence

Form(B/R,R[N])→ H1(B/R,G(R[F ])). (9)

Combining (7) and (9) yields a bijective correspondence

Form(B/R,Map(F ,R))→ Form(B/R,R[N]).

Taking the direct limit of both sides yields the bijection

Form(Map(F ,R))→ Form(R[N]).

Thus by Lemma 4.1, we obtain a bijection

Θ : Gal(R,F )→ Form(R[N]).

�
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In [HP86, Theorem 5], the authors given an explicit description of
the map Θ.

Theorem 4.3 (Haggenmüller and Pareigis) Let N be a finitely
generated group with finite automorphism group F = Aut(N).
Then the bijection Θ : Gal(R,F )→ Form(R[N]) associates to
each F -Galois extension A of R, the form H = Θ(A) of R[N]
defined as the fixed ring

H = (A[N])F ,

where the action of F on N is through the automorphism group F
and the action of F on A is the Galois action. The form H is an
A-form of R[N] with isomorphism ψ : A⊗R H → A[N] defined as
ψ(x ⊗ h) = xh, for x ∈ A, h ∈ H.

�
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As one might expect, the trivial form of Map(F ,R) is mapped to
the trivial form of R[N].

Proposition 4.4 Let N be a finitely generated group with finite
automorphism group F = Aut(N). Let A = Map(F ,R) denote the
trivial F -Galois extension of R. Then Θ(A) = (A[N])F ∼= R[N].

Proof. (Sketch) H = (A[N])F is free over R on a basis consisting
of grouplike elements. Hence, H = R[N ′] for some finite group N ′.
Since A⊗R H = A⊗R R[N ′] ∼= A[N] as Hopf algebras, we conclude
that N ′ ∼= N.

�
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Giving an explicit description of the inverse map

Θ−1 : Form(R[N])→ Gal(R,F )

is more subtle.

In the next section, we give an explicit formula for Θ−1 in the case
that the forms are given as the Hopf algebras of Hopf-Galois
structures of a (classical) Galois extension of K .
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5. Connection to Hopf-Galois Theory

For the remainder of this talk, we take R = K , where K is a finite
field extension of Q. There is a natural application of the map Θ
to Hopf-Galois theory.

5.1 Review of Greither-Pareigis theory

Let E/K be a Galois extension with group G . Let H be a finite
dimensional, cocommutative K -Hopf algebra with comultiplication
∆ : H → H ⊗R H, counit ε : H → K , and coinverse S : H → H.
Suppose there is a K -linear action · of H on E that satisfies

h · (xy) =
∑
(h)

(h(1) · x)(h(2) · y), h · 1 = ε(h)1

for all h ∈ H, x , y ∈ E , where ∆(h) =
∑

(h) h(1) ⊗ h(2) is Sweedler
notation.
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Suppose also that the K -linear map

j : E ⊗K H → EndK (E ),

given as j(x ⊗ h)(y) = x(h · y), is an isomorphism of vector spaces
over K . Then H together with this action, denoted as (H, ·),
provides a Hopf-Galois structure on E/K .

Two Hopf-Galois structures (H, ·), (H ′, ·′) on E/K are isomorphic
if there is a Hopf algebra isomorphism f : H → H ′ for which
h · x = f (h) ·′ x for all x ∈ E , h ∈ H (see [CRV15, Introduction]).
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C. Greither and B. Pareigis [GP87] have given a complete
classification of Hopf-Galois structures up to isomorphism.

Denote by Perm(G ) the group of permutations of G . A subgroup
N ≤ Perm(G ) is regular if |N| = |G | and η(g) 6= g for all η 6= 1N ,
g ∈ G . Let λ : G → Perm(G ), λ(g)(h) = gh, denote the left
regular representation.

A subgroup N ≤ Perm(G ) is normalized by λ(G ) ≤ Perm(G ) if
λ(G ) is contained in the normalizer of N in Perm(G ).
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Theorem 5.1.1 (Greither and Pareigis) Let E/K be a Galois
extension with group G. There is a one-to-one correspondence
between the regular subgroups of Perm(G ) that are normalized by
λ(G ) and the isomorphism classes of Hopf Galois structures on
E/K.

�

Let N be a regular subgroup of Perm(G ) normalized by λ(G ). We
compute the corresponding Hopf-Galois structure as follows: G
acts on the group algebra E [N] through the Galois action on E
and conjugation by λ(G ) on N, i.e.,

g(xη) = g(x)(λ(g)ηλ(g−1)), g ∈ G , x ∈ E , η ∈ N.

(We shall denote the conjugation action of λ(g) ∈ λ(G ) on η ∈ N
by gη.)
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Let H denote the fixed ring

(E [N])G = {x ∈ E [N] : g(x) = x ,∀g ∈ G}.

Then H is an n-dimensional E -Hopf algebra, n = [E : K ], and
E/K admits the Hopf Galois structure (H, ·) [GP87, p. 248, proof
of 3.1 (b)⇒(a)], [Ch00, Theorem 6.8, pp. 52-54].

The action of H on E/K is given as(∑
η∈N

rηη
)
· x =

∑
η∈N

rηη
−1[1G ](x),

see [Ch11, Proposition 1].

By [GP87, p. 249, proof of 3.1, (a)⇒(b)],

E ⊗K H ∼= E ⊗K K [N] ∼= E [N],

as E -Hopf algebras, so H is an E -form of K [N].
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If N is isomorphic to the abstract group N ′, then we say that the
Hopf-Galois structure (H, ·) on E/K is of type N ′.

5.2 Connection to the map Θ

If (H, ·) is a Hopf-Galois structure on E/K of type N, then the
Hopf algebra H is a Hopf form of K [N]. Thus H can be recovered
via the Haggenmüller and Pareigis bijection (Theorem 4.2).

In other words, with F = Aut(N), there is an F -Galois extension A
of K with

Θ(A) = (A[N])F = H.

We seek a method to construct A.
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From [GP87, p. 249, Proof of 3.2], the E -form H of K [N]
corresponds to the cocycle % : G → F , which is given by
congugation by elements of λ(G ).

The kernel of % is the normal subgroup of λ(G ) given as

G0 = {g ∈ λ(G ) | gη = η,∀η ∈ N}.

The quotient group λ(G )/G0 is isomorphic to a subgroup U of
F = Aut(N).

Let E0 = EG0 . Then E0 is Galois extension of K with group U. By
Theorem 2.4, there exist an F -Galois extension of K of the form

A = E0 × E0 × · · · × E0︸ ︷︷ ︸
n

,

where [F : U] = n.

43 / 52



Proposition 5.2.1 Let E/K be a Galois extension with group G
and let (H, ·) be a Hopf-Galois structure on E/K of type N. Let
G0, E0, and A be as above. Then

Θ(A) = H.

Proof. Since the map Θ : Gal(K ,F )→ Form(K [N]) is a
bijection, and H ∈ Form(K [N]), there exists an F -Galois extension
B of K for which Θ(B) = H. By Theorem 2.4,

B = M ×M × · · · ×M︸ ︷︷ ︸
m

,

where M is a V -Galois field extension of K for some subgroup V
of F of index [F : V ] = m. We claim that A = B.
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To this end, H is an B-form of K [N], thus

B ⊗K H ∼= B[N],

given by x ⊗ h 7→ xh. The F -Galois extension B contains the field
M and we have

M ⊗K H ∼= M[N],

and so, H is an M-form of K [N].

By [GP87, Corollary 3.2], E0 is the smallest field extension of K ,
contained in E with

E0 ⊗ H ∼= E0[N].

Thus H is an E0-form of K [N].

Since there is a bijection

Form(E0/K ,Map(F ,K ))→ Form(E0/K ,K [N]),

we conclude that Θ−1(H) = B is an E0-form of Map(F ,K ).
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So,

E0 ⊗K (M ×M × · · · ×M︸ ︷︷ ︸
m

) ∼= E0 ⊗K Map(F ,K ) ∼= Map(F ,E0),

Write M ∼= K [x ]/(f (x)) for some minimal polynomial f (x) ∈ K [x ].
Then

E0 ⊗K (M ×M × · · · ×M︸ ︷︷ ︸
m

)

∼= E0 ⊗K (K [x ]/(f (x))× K [x ]/(f (x))× · · · × K [x ]/(f (x))︸ ︷︷ ︸
m

)

∼= E0[x ]/(f (x))× E0[x ]/(f (x))× · · · × E0[x ]/(f (x))︸ ︷︷ ︸
m

)

∼= Map(F ,E0)
∼= E0 × E0 × · · · × E0︸ ︷︷ ︸

|F |

.
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Thus, all of the zeros of f (x) must lie in E0, hence M ⊆ E0. But
since E0 is minimal, E0 = M and U = V . Hence

Θ(A) = H

where
A = E0 × E0 × · · · × E0︸ ︷︷ ︸

n

,

where [F : U] = n, U ∼= λ(G )/G0.
�
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Example 5.2.2. Let E/K be a Galois extension with group G .
Let ρ : G → Perm(G ), λ(g)(h) = hg−1, denote the right regular
representation. Then ρ(G ) is a regular subgroup of Perm(G )
normalized by λ(G ); ρ(G ) corresponds to the classical Hopf-Galois
structure on E/K with Hopf algebra K [G ] [Ch00, (6.10)
Proposition].

Since λ(G ) commutes with ρ(G ), we have

G0 = {g ∈ λ(G ) | gη = η,∀η ∈ ρ(G )} = λ(G ).

Thus U = λ(G )/G0 = 1 and E0 = EG0 = K . Let F = Aut(G ).
Then

Θ(A) = K [G ]

where
A = K × K × · · · × K︸ ︷︷ ︸

n

,

with n = [F : 1] = |F |. Of course, A is the trivial F -Galois
extension of K , Map(F ,K ).

�
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6. The Hopf Algebra Isomorphism Problem

Let E/K be a Galois extension with group G . Various authors:
[CRV15], [KKTU19a, Section 4], [KKTU19b, Theorem 2.2],
[TT19, Section 3] have addressed the following question: what are
the K -Hopf algebra isomorphism classes of the various Hopf
algebras that arise from the Hopf-Galois structures on E/K?

We can use Proposition 5.2.1 to establish a partial result regarding
the Hopf algebra isomorphism problem.

Let (H, ·), (H ′, ·′) be Hopf-Galois structures on E/K corresponding
to regular subgroups N, N ′ of Perm(G ), respectively.
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If (H, ·) and (H ′, ·′) are not of the same type, i.e., if N 6∼= N ′, then
E [N] 6∼= E [N ′] as Hopf algebras. Thus E ⊗K H 6∼= E ⊗K H ′ as Hopf
algebras, and hence H 6∼= H ′ as K -Hopf algebras.

So the Hopf algebras attached to a Hopf-Galois structure can only
be isomorphic as Hopf algebras if the structures are of the same
type. In what follows we assume that (H, ·) and (H ′, ·′) are of the
same type N ∼= N ′.
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Proposition 6.1 Let E/K be a Galois extension with group G.
Let (H, ·), (H ′, ·′) be Hopf-Galois structures on E/K corresponding
to regular subgroups N, N ′ of Perm(G ), respectively, with N ∼= N ′.
Let

G0 = {g ∈ λ(G ) | gη = η,∀η ∈ N},

G ′0 = {g ∈ λ(G ) | gη = η,∀η ∈ N ′}.

Then H ∼= H ′ as K-Hopf algebras only if G0 = G ′0.

Proof. Suppose that H ∼= H ′ as K -Hopf algebras. Let
F = Aut(N). Then by Proposition 5.2.1, there exists F -Galois
extensions A,A′ of K with Θ(A) = H and Θ(A′) = H ′, where
A ∼= A′ as F -Galois extensions.
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Let U = λ(G )/G0, U ′ = λ(G )/G ′0. We have

A = E0 × E0 × · · · × E0︸ ︷︷ ︸
m

,

and
A′ = E ′0 × E ′0 × · · · × E ′0︸ ︷︷ ︸

n

,

with m = [F : U] and n = [F : U ′]. Since A ∼= A′, m = n and
E0
∼= E ′0. Since E0 is Galois with group U and E ′0 is Galois with

group U ′, we must have E0 = E ′0. Consequently, G0 = G ′0.
�

Remark 6.2 Proposition 6.1 can be obtained from [KKTU19b,
Theorem 2.2] using a G -equivariant isomorphism N → N ′.

�
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